CAMP Special Lecture

This series of lectures is free and open to everyone.
If you would join this, in order to let us know, please register here before June 14.
  • Title. Alternating Permutations
  • Lecturer. Richard P. Stanley, MIT, USA
  • Date. June 29 (Mon.) - July 3 (Fri.), 2015
  • Time. 14:00 (June 29-30, July 1, July 3), 15:30 (July 2)
  • Venue. CAMP & NIMS
  • Detailed Time & Venue.
    • NIMS Seminar Room (3rd floor), 2:00 PM, June 29, 2015
    • NIMS Seminar Room (3rd floor), 2:00 PM, June 30, 2015
    • CAMP Seminar Room (M), 2:00 PM, July 1, 2015
    • CAMP Seminar Room (L), 3:30 PM, July 2, 2015
    • CAMP Seminar Room (L), 2:00 PM, July 3, 2015
  • Abstract. (for all lectures) A permutation a1 a2 ... an of 1, 2, ..., n is alternating if a1 > a2 < a3 > a4 < ... . Alternating permutations have many fascinating properties related to combinatorics, geometry, representation theory, probability theory, and other areas. We will survey the highlights of this subject.

Lecture 1. (June 29, 14:00) Euler numbers and André's theorem

The number of alternating permutations of 1, 2, ..., n is denoted En and is called an Euler number. The first theorem on alternating permutations is the generating function 

n0 En xn / n! = tan(x) + sec(x) 
due to D. André in 1879. Some other combinatorial objects are also counted by the Euler numbers.

Lecture 2. (June 30, 14:00) Convex polytopes and alternating permutations

There are two interesting convex polytopes whose volume is En / n!. One of them is given by xi ≥ 0 (≤ i ≤ n) and xi + xi+1 ≤  1 (≤ i ≤ n-1). They fit into a more general context of order polytopes and chain polytopes of posets.

Lecture 3. (July 1, 14:00) Longest alternating subsequences 

What can one say about the length of the longest alternating subsequence of a random permutation? This theory is analogous but simpler than the better-known theory of the longest increasing subsequence of a random permutation. For example, if n>1 then the expected length of the longest alternating subsequence of a random permutation of 1, 2, ..., n is exactly (4n+1)/6.

Lecture 4. (July 2, 15:30) A symmetric group character related to alternating permutations

H. O. Foulkes defined a certain character χ of the symmetric group Sn whose values χ(w) are either 0 or ±Ek for some ≤ k ≤ n (depending on w). This character allows us to enumerate certain classes of alternating permutations using representation theory. For instance, if p is prime then the number of alternating permutations in Sp that are also p-cycles is equal to

(Ep - (-1)(p-1)/2) / p
No elementary proof is known.

Lecture 5. (July 3, 14:00) The cd-index of the symmetric group 

The cd-index of Sn is a noncommutative polynomial in the indeterminates c and d that encodes a lot of combinatorial information. The number of terms in this polynomial is En, and there are interesting connections with alternating permutations.



Showing 21 items
Byunghak Hwang Seoul National University Student 
Heesung Shin Inha University Professor 
James Haglund University of Pennsylvania, USA Professor 
Jiang Zeng Université Claude Bernard Lyon 1, France Professor 
Jinha Kim Seoul National University Student 
Jung Seok Oh Seoul National University Student 
Kang-Ju Lee Seoul National University Student 
Kyoungsuk Park Ajou University Student 
Masao Ishikawa University of the Ryukyus, Japan Professor 
Minki Kim KAIST Student 
Richard P. Stanley MIT, USA Professor 
Sang-Hoon Yu Seoul National University Student 
Sangwook Kim Chonnam National University Professor 
Sanha Lee Sungkyunkwan University Student 
Seung-Il Choi Sogang University Postdoc 
Seung Jin Lee KIAS Postdoc 
Shishuo Fu Chongqing University, China Professor 
Sunyoung Nam Sogang University Student 
YoungHun Kim Sogang University Student 
Younjin Kim KAIST Postdoc 
Zhicong Lin NIMS Postdoc 
Showing 21 items